Rationale: Sinoatrial node cells (SANCs) generate local, subsarcolemmal Ca(2+) releases (LCRs) from sarcoplasmic reticulum (SR) during late diastolic depolarization. LCRs activate an inward Na(+)-Ca(2+) exchange current (I(NCX)), which accelerates diastolic depolarization rate, prompting the next action potential (AP). The LCR period, ie, a delay between AP-induced Ca(2+) transient and LCR appearance, defines the time of late diastolic depolarization I(NCX) activation. Mechanisms that control the LCR period, however, are still unidentified.
Objective: To determine dependence of the LCR period on SR Ca(2+) refilling kinetics and establish links between regulation of SR Ca(2+) replenishment, LCR period, and spontaneous cycle length.
Methods and results: Spontaneous APs and SR luminal or cytosolic Ca(2+) were recorded using perforated patch and confocal microscopy, respectively. Time to 90% replenishment of SR Ca(2+) following AP-induced Ca(2+) transient was highly correlated with the time to 90% decay of cytosolic Ca(2+) transient (T-90(C)). Local SR Ca(2+) depletions mirror their cytosolic counterparts, LCRs, and occur following SR Ca(2+) refilling. Inhibition of SR Ca(2+) pump by cyclopiazonic acid dose-dependently suppressed spontaneous SANCs firing up to ≈50%. Cyclopiazonic acid and graded changes in phospholamban phosphorylation produced by β-adrenergic receptor stimulation, phosphodiesterase or protein kinase A inhibition shifted T-90(C) and proportionally shifted the LCR period and spontaneous cycle length (R(2)=0.98).
Conclusions: The LCR period, a critical determinant of the spontaneous SANC cycle length, is defined by the rate of SR Ca(2+) replenishment, which is critically dependent on SR pumping rate, Ca(2+) available for pumping, supplied by L-type Ca(2+) channel, and ryanodine receptor Ca(2+) release flux, each of which is modulated by cAMP-mediated protein kinase A-dependent phosphorylation.