Introduction: Simulation is a safe alternative to practicing procedural skills on patients. However, few published studies have examined the long-term effect of simulation technology on bedside procedures such as central venous catheter (CVC) insertion.
Methods: To determine whether simulation-based teaching improves procedural comfort, performance, and clinical events in CVC insertion, over traditional methods of procedural teaching, and to assess the long-term effect of this training, we conducted a prospective, randomized controlled trial with 53 postgraduate year-1 and postgraduate year-2 medical residents at a tertiary-care teaching hospital. At the start of the study, we assessed all residents' procedural comfort and previous training and experience with CVCs. We then measured their baseline performance in placing CVCs on simulators, using a validated assessment tool (pretest). For the intervention group, we reassessed performance immediately after simulation training (posttest). All subjects then placed actual CVCs as clinically indicated while on their medical intensive care unit rotations, under the supervision of critical care faculty. We measured clinical events associated with these CVCs. After their medical intensive care unit rotations, we reassessed CVC insertion skills on simulators and procedural comfort of all subjects (delayed posttest).
Results: Intervention subjects demonstrated a significant improvement in skills immediately after simulation training. At delayed posttesting, performance diminished somewhat in the intervention subjects and was not significantly different from control subjects; however, a significant increase over pretest scores persisted in both groups.
Conclusions: A CVC insertion simulation course improves procedural skills. These skills decline over time, and simulation conferred no long-term additional benefit over traditional methods of procedural teaching.