Independent component analysis (ICA) is a statistical technique that estimates a set of sources mixed by an unknown mixing matrix using only a set of observations. For this purpose, the only assumption is that the sources are statistically independent. In many applications, some information about the nature of the unknown signals is available. In this paper we show a method for incorporating prior information about the mixing matrix to increase the levels of detection of responses to visual stimuli. Experimentally, our method matches the performance of known ICA algorithms for high SNR and can greatly improve the performance for low levels of SNR or low levels of signal-to-background ratio (SBR). For the problem of signal extraction, we have achieved detection for signals as small as 0.01% (-40 dB SBR) in hybrid live/synthetic data simulations. In experiments using a functional imager of the retina, measured changes in reflectance in response to visual stimulus are in the order of 0.1-1% of the total pixel intensity value, which makes the functional signal difficult to detect by standard methods. The results of the analysis show that using ICA-P signal levels of 0.1% can be detected. The approach also generalizes the standard Infomax algorithm which can be thought of as a special case of ICA-P when the confidence parameter or a tolerance value is zero. For in vivo animal experiments, we show that signal detection agreement over a range of confidence values parameters can be used to establish reflectance changes in response to the visual stimulus.
Copyright © 2010 Elsevier B.V. All rights reserved.