Soft X-ray induced chemistry of H(2)O, CO and CH(3)OH and the effects of the water and nitric acid hydrate (HNO(3).1.65H(2)O) matrix on the photochemistry of CO and CH(3)OH have been investigated using NEXAFS spectroscopy. For pure H(2)O, CO and CH(3)OH ices, we show that the destruction rates are strongly limited by back reactions, leading to strikingly high survival rates of these molecules upon the harsh irradiation conditions to which they are submitted. We also evidence the interplay between the photochemical reactions of CO and CH(3)OH and those of the matrix. The OH and O radicals released by the photolysis of H(2)O and HNO(3) react with the CO and CH(3)OH and their fragments, considerably reducing the survival rates compared to pure CO and pure CH(3)OH ices, especially in presence of nitric acid, and dramatically enhancing the formation of CO(2) at the expense of CO. Because NEXAFS spectroscopy allows identifying which reactions are important among those possible, it emerges a simple picture of the photochemical routes of CO and CH(3)OH in the H(2)O and HNO(3)/H(2)O environments.