The latency-associated nuclear antigen (LANA) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) is critical for segregation of viral episomes to progeny nuclei and allows for maintenance of the viral genome in newly divided daughter cells. LANA binds to KSHV terminal repeat (TR) DNA and simultaneously associates with chromatin-bound cellular proteins. This process tethers the viral episomes to host chromosomes. However, the mechanism of tethering is complex and involves multiple protein-protein interactions. Our previous proteomics studies which showed the association of LANA with centromeric protein F (CENP-F) prompted us to further study whether LANA targets centromeric proteins for persistence of KSHV episomes during cell division. Here we show that LANA colocalized with CENP-F as speckles, some of which are paired at centromeric regions of a subset of chromosomes in KSHV-infected JSC-1 cells. We also confirm that both the amino and carboxy termini of LANA can bind to CENP-F. Moreover, LANA associated with another kinetochore protein, Bub1 (budding uninhibited by benzimidazole 1), which is known to form a complex with CENP-F. Importantly, we demonstrated the dynamic association of LANA and Bub1/CENP-F and the colocalization between Bub1, LANA, and the KSHV episome tethered to the host chromosome using fluorescence in situ hybridization (FISH). Knockdown of Bub1 expression by lentivirus-delivered short hairpin RNA (shRNA) dramatically reduced the number of KSHV genome copies, whereas no dramatic effect was seen with CENP-F knockdown. Therefore, the interaction between LANA and the kinetochore proteins CENP-F and Bub1 is important for KSHV genome tethering and its segregation to new daughter cells, with Bub1 potentially playing a more critical role in the long-term persistence of the viral genome in the infected cell.