A low resistance microfluidic system for the creation of stable concentration gradients in a defined 3D microenvironment

Biomed Microdevices. 2010 Dec;12(6):1027-41. doi: 10.1007/s10544-010-9457-7.

Abstract

The advent of microfluidic technology allows control and interrogation of cell behavior by defining the local microenvironment with an assortment of biochemical and biophysical stimuli. Many approaches have been developed to create gradients of soluble factors, but the complexity of such systems or their inability to create defined and controllable chemical gradients has limited their widespread implementation. Here we describe a new microfluidic device which employs a parallel arrangement of wells and channels to create stable, linear concentration gradients in a gel region between a source and a sink well. Pressure gradients between the source and sink wells are dissipated through low resistance channels in parallel with the gel channel, thus minimizing the convection of solute in this region. We demonstrate the ability of the new device to quantitate chemotactic responses in a variety of cell types, yielding a complete profile of the migratory response and representing the total number of migrating cells and the distance each cell has migrated. Additionally we show the effect of concentration gradients of the morphogen Sonic hedgehog on the specification of differentiating neural progenitors in a 3-dimensional matrix.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / metabolism
  • Becaplermin
  • Cattle
  • Cell Differentiation
  • Cell Movement*
  • Chemotaxis
  • Electric Capacitance
  • Electric Impedance
  • Embryoid Bodies / cytology
  • Embryoid Bodies / metabolism
  • Gene Expression Regulation
  • Hedgehog Proteins / metabolism
  • Humans
  • Jurkat Cells
  • Microfluidic Analytical Techniques / instrumentation*
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / metabolism
  • Platelet-Derived Growth Factor / metabolism
  • Pressure
  • Proto-Oncogene Proteins c-sis
  • T-Lymphocytes / cytology
  • T-Lymphocytes / metabolism

Substances

  • Basic Helix-Loop-Helix Transcription Factors
  • Hedgehog Proteins
  • Platelet-Derived Growth Factor
  • Proto-Oncogene Proteins c-sis
  • Becaplermin