Allogeneic hematopoietic stem cell transplantation represents the most effective form of immunotherapy for chemorefractory diseases. However, animal models have been missing that allow evaluation of donor-patient-specific graft-versus-leukemia effects. Thus, we sought to establish a patient-tailored humanized mouse model that would result in long-term engraftment of various lymphocytic lineages and would serve as a donor-specific surrogate. Following transfer of donor-derived peripheral blood stem cells into NOD/SCID/IL-2Rgamma(null) (NSG) mice with supplementation of human IL-7, we could demonstrate robust engraftment and multilineage differentiation comparable to earlier studies using cord blood stem cells. Phenotypical and functional analyses of lymphoid lineages revealed that >20 wk posthematopoietic stem cell transplantation, the majority of T lymphocytes consisted of memory-type CD4(+) T cells capable of inducing specific immune functions, whereas CD8(+) T cells were only present in low numbers. Analysis of NSG-derived NK cells revealed the expression of constitutively activated CD56(bright)CD16(-) killer Ig-like receptor(negative) NK cells that exhibited functional impairments. Thus, the data presented in this study demonstrate that humanized NSG mice can be successfully used to develop a xenotransplantation model that might allow patient-tailored treatment strategies in the future, but also highlight the need to improve this model, for example, by coadministration of differentiation-promoting cytokines and induction of human MHC molecules to complement existing deficiencies in NK and CD8(+) T cell development.