Insights into the nitric oxide reductase mechanism of flavodiiron proteins from a flavin-free enzyme

Biochemistry. 2010 Aug 24;49(33):7040-9. doi: 10.1021/bi100788y.

Abstract

Flavodiiron proteins (FDPs) catalyze reductive scavenging of dioxygen and nitric oxide in air-sensitive microorganisms. FDPs contain a distinctive non-heme diiron/flavin mononucleotide (FMN) active site. Alternative mechanisms for the nitric oxide reductase (NOR) activity consisting of either protonation of a diiron-bridging hyponitrite or "super-reduction" of a diferrous-dinitrosyl by the proximal FMNH(2) in the rate-determining step have been proposed. To test these alternative mechanisms, we examined a deflavinated FDP (deflavo-FDP) from Thermotoga maritima. The deflavo-FDP retains an intact diiron site but does not exhibit multiturnover NOR or O(2) reductase (O(2)R) activity. Reactions of the reduced (diferrous) deflavo-FDP with nitric oxide were examined by UV-vis absorption, EPR, resonance Raman, and FTIR spectroscopies. Anaerobic addition of nitric oxide up to one NO per diferrous deflavo-FDP results in formation of a diiron-mononitrosyl complex characterized by a broad S = (1)/(2 )EPR signal arising from antiferromagnetic coupling of an S = (3)/(2) {FeNO}(7) with an S = 2 Fe(II). Further addition of NO results in two reaction pathways, one of which produces N(2)O and the diferric site and the other of which produces a stable diiron-dinitrosyl complex. Both NO-treated and as-isolated deflavo-FDPs regain full NOR and O(2)R activities upon simple addition of FMN. The production of N(2)O upon addition of NO to the mononitrosyl deflavo-FDP supports the hyponitrite mechanism, but the concomitant formation of a stable diiron-dinitrosyl complex in the deflavo-FDP is consistent with a super-reduction pathway in the flavinated enzyme. We conclude that a diiron-mononitrosyl complex is an intermediate in the NOR catalytic cycle of FDPs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electron Spin Resonance Spectroscopy
  • Escherichia coli / genetics
  • Flavins / metabolism
  • Gene Expression
  • Iron / metabolism*
  • Metalloproteins / genetics
  • Metalloproteins / isolation & purification
  • Metalloproteins / metabolism*
  • Nitric Oxide / metabolism
  • Oxidoreductases / metabolism*
  • Spectrophotometry, Ultraviolet
  • Spectroscopy, Fourier Transform Infrared
  • Thermotoga maritima / enzymology*

Substances

  • Flavins
  • Metalloproteins
  • Nitric Oxide
  • Iron
  • Oxidoreductases
  • nitric-oxide reductase