Manufacture and cytotoxicity of a lead-free piezoelectric ceramic as a bone substitute-consolidation of porous lithium sodium potassium niobate by cold isostatic pressing

Int J Oral Sci. 2009 Jun;1(2):99-104. doi: 10.4248/ijos.09005.

Abstract

Aim: The piezoelectric properties and cytotoxicity of a porous lead-free piezoelectric ceramic for use as a direct bone substitute were investigated.

Methodology: Cold isostatic pressing (CIP) was applied to fabricate porous lithium sodium potassium niobate (Li0.06Na0.5K0.44) NbO3 specimens using a pore-forming method. The morphologies of the CIP-processed specimens were characterized and compared to those of specimens made by from conventional pressing procedures. The effects of the ceramic on the attachment and proliferation of osteoblasts isolated from the cranium of 1-day-old Sprague-Dawley rats were examined by a scanning electron microscopy (SEM) and methylthiazol tetrazolium (MTT) assay.

Results: The results showed that CIP enhanced piezoelectricity and biological performance of the niobate specimen, and also promoted an extracellular matrix-like topography of it. In vitro studies showed that the CIP-enhanced material had positive effects on the attachment and proliferation of osteoblasts.

Conclusion: Niobate ceramic generated by CIP shows a promise for being a piezoelectric composite bone substitute.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biocompatible Materials / chemistry*
  • Biocompatible Materials / toxicity
  • Bone Substitutes / chemical synthesis*
  • Bone Substitutes / toxicity
  • Cell Adhesion / drug effects
  • Cell Proliferation / drug effects
  • Cells, Cultured
  • Ceramics / chemical synthesis*
  • Ceramics / toxicity
  • Coloring Agents
  • Electrochemistry
  • Materials Testing
  • Microscopy, Electron, Scanning
  • Niobium / toxicity
  • Osteoblasts / drug effects
  • Oxides / chemical synthesis*
  • Oxides / toxicity
  • Porosity
  • Potassium / toxicity
  • Pressure
  • Rats
  • Rats, Sprague-Dawley
  • Skull / cytology
  • Stress, Mechanical
  • Surface Properties
  • Tetrazolium Salts
  • Thiazoles

Substances

  • Biocompatible Materials
  • Bone Substitutes
  • Coloring Agents
  • Oxides
  • Tetrazolium Salts
  • Thiazoles
  • Niobium
  • potassium niobate
  • lithium niobate
  • thiazolyl blue
  • Potassium