The objective of this study was to determine the effects of in vitro embryo production on physical development and levels of expression of mRNAs for insulin-like growth factor (IGF) ligands (IGF1, IGF2), their receptors (IGF1R, IGF2R), and IGF binding protein-2 (IGFBP2) in bovine fetuses during early gestation. In vivo embryos were recovered from superovulated Holstein cows. For production of embryos in vitro, Holstein oocytes were matured, fertilized, and subsequently cultured in M199 with 10% serum to 168 hpi. On Day 70 of gestation, fetuses (in vivo, n = 14; in vitro, n = 13) were recovered, serum samples collected, and physical measurements recorded. Semi-quantitative RT-PCR assays were used to determine the levels of expression of mRNAs for IGF1, IGF2, IGF1R, and IGF2R in fetal liver and skeletal muscle. Western blots were used to assess levels of IGFBP2 in fetal serum. Fetal body weight did not differ with treatment; however, production of embryos in vitro was associated with decreased crown-nose length and a tendency for increased paired kidney weight, which became significant when expressed on a per bodyweight basis. There was no effect of treatment on levels of IGFBP2 in fetal serum. Levels of IGF1 mRNA in fetal liver were decreased (P < 0.001) in the in vitro group. Levels of IGF2R mRNA in both liver and skeletal muscle were also decreased (P < 0.01) in fetuses from the in vitro group. In summary, fetuses at Day 70 of gestation from embryos produced in vitro had shortened crown-nose length and increased kidney weight on a per bodyweight basis, as well as decreased expression of mRNAs for IGF1 in liver and IGF2R in both liver and skeletal muscle, compared with fetuses from embryos produced in vivo. In conclusion, in vitro embryo culture was associated with subtle changes in fetal development as well as altered expression of both imprinted and non-imprinted genes.
Copyright © 2010 Elsevier Inc. All rights reserved.