Intersubject variability of foveal cone photoreceptor density in relation to eye length

Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6858-67. doi: 10.1167/iovs.10-5499. Epub 2010 Aug 4.

Abstract

Purpose: Adaptive optics scanning laser ophthalmoscopy (AOSLO) under optimized wavefront correction allows for routine imaging of foveal cone photoreceptors. The intersubject variability of foveal cone density was measured and its relation to eye length evaluated.

Methods: AOSLO was used to image 18 healthy eyes with axial lengths from 22.86 to 28.31 mm. Ocular biometry and an eye model were used to estimate the retinal magnification factor. Individual cones in the AOSLO images were labeled, and the locations were used to generate topographic maps representing the spatial distribution of density. Representative retinal (cones/mm(2)) and angular (cones/deg(2)) cone densities at specific eccentricities were calculated from these maps.

Results: The entire foveal cone mosaic was resolved in four eyes, whereas the cones within 0.03 mm eccentricity remained unresolved in most eyes. The preferred retinal locus deviated significantly (P < 0.001) from the point of peak cone density for all except one individual. A significant decrease in retinal density (P < 0.05) with increasing axial length was observed at 0.30 mm eccentricity but not closer. Longer, more myopic eyes generally had higher angular density near the foveal center than the shorter eyes, but by 1°, this difference was nullified by retinal expansion, and so angular densities across all eyes were similar.

Conclusions: The AOSLO can resolve the smallest foveal cones in certain eyes. Although myopia causes retinal stretching in the fovea, its effect within the foveola is confounded by factors other than cone density that have high levels of intersubject variability.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Biometry
  • Body Weights and Measures
  • Cell Count
  • Eye / anatomy & histology*
  • Female
  • Fovea Centralis / cytology*
  • Humans
  • Image Interpretation, Computer-Assisted
  • Male
  • Ophthalmoscopy
  • Reproducibility of Results
  • Retinal Cone Photoreceptor Cells / cytology*
  • Surveys and Questionnaires
  • Young Adult