Polymeric drugs based on random copolymers with antimitotic activity were obtained by free radical copolymerization of oleyl 2-acetamido-2-deoxy-α-d-glucopyranoside methacrylate (OAGMA) and 2-ethyl-(2-pyrrolidone) methacrylate (EPM) at low and high conversion and analyzed in terms of microstructure, physicochemical, and biological properties. Reactivity ratios of monomers were found to be r(OAGMA) = 1.34 and r(EPM) = 0.98, indicating the obtaining of statistical copolymers with random sequence distribution of the comonomeric units in the macromolecular chains. The glass transition temperature of the copolymers presents a negative deviation from the predicted values according to the Fox equation, suggesting a higher flexibility of the alternating diad. Copolymeric systems with OAGMA contents between 10-50 mol % presented thermosensitive behavior in a heating process showing cloud point temperatures (CPT) in the range 45-28 °C with increasing OAGMA content and hysteresis in one heating-and-cooling cycle. In vitro glycolipid release studies revealed the stability of the ester group in culture medium. The polymeric drugs with 30 and 50 mol % OAGMA presented antimitotic activity on a human glioblastoma line, but they were less toxic on normal human fibroblast cultures.