In order to further investigate the precise mechanisms of cholecystokinin(CCK)-induced pepsinogen secretion from gastric chief cells, we compared the signal transducing mechanisms activated by CCK with those activated by sodium fluoride (NaF) in isolated guinea pig gastric chief cells. NaF stimulated a monophasic increase in diacylglycerol accumulation with a peak value observed at 15 sec, while CCK strongly stimulated its biphasic accumulation. NaF evoked an increase in initial Ca2+ influx rate with a slow and smooth increase in intracellular free Ca2+ concentration [( Ca2+]i) monitored by fura-2, while CCK stimulated a rapid increase in [Ca2+]i followed by a late sustained phase of [Ca2+]i increase. Lanthanum chloride (La3+) effectively (unlike either nifedipine or verapamil) blocked NaF-stimulated increase in [Ca2+], but it blocked only CCK-stimulated late sustained phase of [Ca2+]i increase. La3+ reduced NaF-or CCK-stimulated maximal pepsinogen secretion to 57.0 +/- 2.5% and 73.1 +/- 3.1% of control, respectively. These results suggest that NaF activates a signal transducing mechanism which seems to be distinct from that activated by CCK, thereby inducing an increase in diacylglycerol accumulation, Ca3+ influx and pepsinogen secretion in guinea pig gastric chief cells.