Leukocyte trafficking is a therapeutic target in IBD. The integrins α₄β and α₄β₁ regulate leukocyte migration into tissues and lymphoid organs. Current strategies rely on biologics, such as mAb, to inhibit leukocyte recruitment. Here we show the in vivo therapeutic effects of a small molecule α4-integrin antagonist (GSK223618A) in a leukocyte-trafficking model and a murine model of colitis. Leukocytes isolated from MLNs of transgenic β-actin-luc+ mice were injected i.v. into recipients with DSS-induced colitis. Recipient mice were orally gavaged with vehicle or an α₄-integrin antagonist 1 h pre-adoptive transfer, followed by bioluminescence whole body and ex vivo organ imaging 4 h post-transfer. To confirm its therapeutic effect, the α₄-integrin antagonist was given orally twice daily for 6 days to mice with DSS-induced colitis, starting on Day 3. Clinical, macroscopic, and histological signs of inflammation were assessed and gene-expression profiles analyzed. Using bioluminescence imaging, we tracked and quantified leukocyte migration to the inflamed gut and demonstrated its inhibition by a small molecule α₄-integrin antagonist. Additionally, the therapeutic effect of the antagonist was confirmed in DSS-induced colitis in terms of clinical, macroscopic, and histological signs of inflammation. Gene expression analysis suggested enhancement of tissue healing in compound-treated animals. Inhibition of leukocyte trafficking using small molecule integrin antagonists is a promising alternative to large molecule biologics. Furthermore, in vivo bioluminescence imaging is a valuable strategy for preclinical evaluation of potential therapeutics that target leukocyte trafficking in inflammatory diseases.