We investigated the delta(15)N profile of N (extractable NH(4)(+), NO(3)(-), and organic N (EON)) in the soil of a N-saturated subtropical forest. The order of delta(15)N in the soil was EON > NH(4)(+) > NO(3)(-). Although the delta(15)N of EON had been expected to be similar to that of bulk soil N, it was higher than that of bulk soil N by 5 per thousand. The difference in delta(15)N between bulk soil N and EON (Delta(15)N(bulk-EON)) was correlated significantly with the soil C/N ratio. This correlation implies that carbon availability, which determines the balance between N assimilation and dissimilation of soil microbes, is responsible for the high delta(15)N of EON, as in the case of soil microbial biomass delta(15)N. A thorough delta(15)N survey of available N (NH(4)(+), NO(3)(-), and EON) in the soil profiles from the organic layer to 100 cm depth revealed that the delta(15)N of the available N forms did not fully overlap with the delta(15)N of plants. This mismatch in delta(15)N between that of available N and that of plants reflects apparent isotopic fractionation during N uptake by plants, emphasizing the high N availability in this N-saturated forest.
Copyright 2010 John Wiley & Sons, Ltd.