In this study, a 2D multiphase magnetic resonance displacement encoding with stimulated echoes (DENSE) imaging and analysis method was developed for direct quantification of Lagrangian strain in the mouse heart. Using the proposed method, <10 ms temporal resolution and 0.56 mm in-plane resolution were achieved. A validation study that compared strain calculation by displacement encoding with stimulated echoes and by magnetic resonance tagging showed high correlation between the two methods (R(2) > 0.80). Regional ventricular wall strain and twist were characterized in mouse hearts at baseline and under dobutamine stimulation. Dobutamine stimulation induced significant increase in radial and circumferential strains and torsion at peak systole. A rapid untwisting was also observed during early diastole. This work demonstrates the capability of characterizing cardiac functional response to dobutamine stimulation in the mouse heart using 2D multiphase magnetic resonance displacement encoding with stimulated echoes.
Copyright © 2010 Wiley-Liss, Inc.