Background: Laminin is the most abundant non-collagenous protein in the basement membrane. Recent studies have shown that laminin supports platelet adhesion, activation and aggregation under flow conditions, highlighting a possible role for laminin in hemostasis.
Objective: To investigate the ability of laminin to promote coagulation and support thrombus formation under shear.
Results and methods: Soluble laminin accelerated factor (F) XII activation in a purified system, and shortened the clotting time of recalcified plasma in a FXI- and FXII-dependent manner. Laminin promoted phosphatidylserine exposure on platelets and supported platelet adhesion and fibrin formation in recalcified blood under shear flow conditions. Fibrin formation in laminin-coated capillaries was abrogated by an antibody that interferes with FXI activation by activated FXII, or an antibody that blocks activated FXI activation of FIX.
Conclusion: This study identifies a role for laminin in the initiation of coagulation and the formation of platelet-rich thrombi under shear conditions in a FXII-dependent manner.