Fluorescence spectroscopy provides high sensitivity in quantitative analysis. However, due to spectral interference, it is difficult to determine the individual components of fluorescent multi-component mixtures in such complicated and important body matrices as blood, urine and feces without any pre-separation. In this study, a simple and rapid approach based on non-linear variable-angle synchronous fluorescence spectrometry coupled with partial least squares analysis (NLVASF/PLS) was developed for the simultaneous determination of protoporphyrin IX (PP), uroporphyrin III (UP) and coproporphyrin III (CP). The detection limits were 0.18, 0.29 and 0.24 nmol L(-1) for protoporphyrin IX (PP), uroporphyrin III (UP) and coproporphyrin III (CP), respectively. The individual components of blood porphyrins were quantified, by this method, simultaneously in one scan with only about 30s. The recoveries of this method were above 80% in human whole blood samples. This method provided a potential tool for the determination of porphyrins in whole blood and the differential diagnosis of porphyria, especially for rapid routine screening of large number of samples.
Copyright (c) 2010 Elsevier B.V. All rights reserved.