Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth

Prostate. 2011 Mar 1;71(4):333-43. doi: 10.1002/pros.21247. Epub 2010 Aug 31.

Abstract

Background: The clinical success of the nucleoside analogs 5-aza-cytidine (5-azaC) and 5-aza-2'deoxycytidine (5-aza-dC) as DNA methyltransferase (DNMT) inhibitors has spurred interest in the development of non-nucleoside inhibitors with improved pharmacologic and safety profiles. Because DNMT catalysis features attack of cytosine bases by an enzyme thiol group, we tested whether disulfiram (DSF), a thiol-reactive compound with known clinical safety, demonstrated DNMT inhibitory activity.

Methods: Inhibition of DNMT1 activity by DSF was assessed using methyltransferase activity assays with recombinant DNMT1. Next, prostate cancer cell lines were exposed to DSF and assessed for: i) reduction of global 5-methyl cytosine ((5me)C) content using liquid chromatography/tandem mass spectrometry (LC-MS/MS); ii) gene-specific promoter demethylation by methylation-specific PCR (MSP); and iii) gene-reactivation by real-time RT-PCR. DSF was also tested for growth inhibition using prostate cancer cell lines propagated in vitro in cell culture and in vivo as xenografts in nude mice.

Results: Disulfiram showed a dose-dependent inhibition of DNMT1 activity on a hemimethylated DNA substrate. In prostate cancer cells in culture, DSF exposure led to reduction of global genomic (5me)C content, increase in unmethylated APC and RARB gene promoters, and associated re-expression of these genes, but did not significantly alter prostate-specific antigen (PSA) expression. DSF significantly inhibited growth and clonogenic survival of prostate cancer cell lines in culture and showed a trend for reduced growth of prostate cancer xenografts.

Conclusions: Disulfiram is a non-nucleoside DNMT1 inhibitor that can reduce global (5me)C content, reactivate epigenetically silenced genes, and significantly inhibit growth in prostate cancer cell lines.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases / antagonists & inhibitors*
  • DNA Methylation*
  • Disulfiram / pharmacology*
  • Enzyme Inhibitors / pharmacology*
  • Humans
  • Male
  • Mice
  • Prostate-Specific Antigen / metabolism
  • Prostatic Neoplasms / drug therapy*
  • Prostatic Neoplasms / genetics
  • Prostatic Neoplasms / pathology

Substances

  • Enzyme Inhibitors
  • DNA (Cytosine-5-)-Methyltransferase 1
  • DNA (Cytosine-5-)-Methyltransferases
  • DNMT1 protein, human
  • Dnmt1 protein, mouse
  • Prostate-Specific Antigen
  • Disulfiram