Reactive oxygen species (ROS) actively contribute to the development of a number of human diseases including ischemia. In response to oxidative stress, frataxin has a significant ability to improve cell survival though its biological function is unclear in relation to ischemia. To explore frataxin's role in protecting against ischemic cell death, we constructed PEP-1-Frataxin cell-permeable fusion protein. In a dose- and time-dependent manner PEP-1-Frataxin rapidly transduced into astrocyte cells and protected them against oxidative stress-induced cell death. Further, using an animal model, immunohistochemical analysis revealed that PEP-1-Frataxin prevented neuronal cell death in the CA1 region of the hippocampus induced by transient forebrain ischemia. These results demonstrate that transduced PEP-1-Frataxin protects against cell death in vitro and in vivo, suggesting that transduction of PEP-1-Frataxin could be useful as a therapeutic agent for various human diseases related to oxidative stress.
Copyright © 2010 Elsevier B.V. All rights reserved.