Role of Nrf2 in suppressing LPS-induced inflammation in mouse peritoneal macrophages by polyunsaturated fatty acids docosahexaenoic acid and eicosapentaenoic acid

Mol Pharm. 2010 Dec 6;7(6):2185-93. doi: 10.1021/mp100199m. Epub 2010 Oct 6.

Abstract

This study is to investigate the role of Nrf2 in suppressing LPS-mediated inflammation in ex vivo macrophages by polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Primary peritoneal macrophages from Nrf2 wild-type (+/+; WT) and Nrf2 knockout (-/-; KO) mice were treated with lipopolysaccharides (LPS) in the presence or absence of DHA or EPA. Quantitative real-time PCR (qPCR) analyses showed that LPS potently induced cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the macrophages collected from Nrf2 (+/+) wild-type mice. DHA and EPA inhibited LPS-induced COX-2, iNOS, IL-1β, IL-6, or TNF-α, but increased hemeoxygenase (HO-1) expression. DHA was found to be more potent than EPA in inhibiting COX-2, iNOS, IL-1β, IL-6, and TNF-α mRNA expression. DHA and EPA were also found to induce HO-1 and Nrf2 mRNA with a different dose-response. LPS induced COX-2, iNOS, IL-1β, IL-6, and TNF-α in the macrophages collected from Nrf2 (-/-) mice as well, however, DHA and EPA suppression of COX-2, iNOS, IL-1β, IL-6, and TNF-α was attenuated as compared to that in Nrf2 (+/+) macrophages. Taken together, using Western blotting, ELISA and qPCR approaches coupled with Nrf2 (-/-) mice, our study clearly shows for the first time that DHA/EPA would induce Nrf2 signaling pathway and that Nrf2 plays a role in DHA/EPA suppression of LPS-induced inflammation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cyclooxygenase 2 / genetics
  • Cyclooxygenase 2 / metabolism
  • Docosahexaenoic Acids / pharmacology*
  • Eicosapentaenoic Acid / pharmacology*
  • Heme Oxygenase-1 / antagonists & inhibitors
  • Heme Oxygenase-1 / genetics
  • Heme Oxygenase-1 / metabolism
  • Inflammation / chemically induced
  • Inflammation / prevention & control*
  • Interleukin-6 / antagonists & inhibitors
  • Interleukin-6 / genetics
  • Interleukin-6 / metabolism
  • Lipopolysaccharides / antagonists & inhibitors
  • Lipopolysaccharides / pharmacology
  • Macrophages, Peritoneal / drug effects
  • Macrophages, Peritoneal / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • NF-E2-Related Factor 2 / deficiency
  • NF-E2-Related Factor 2 / metabolism*
  • Nitric Oxide Synthase Type II / antagonists & inhibitors
  • Nitric Oxide Synthase Type II / genetics
  • Nitric Oxide Synthase Type II / metabolism
  • Nitrites / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Structure-Activity Relationship
  • Tumor Necrosis Factor-alpha / antagonists & inhibitors
  • Tumor Necrosis Factor-alpha / genetics
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Interleukin-6
  • Lipopolysaccharides
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, mouse
  • Nitrites
  • Tumor Necrosis Factor-alpha
  • Docosahexaenoic Acids
  • Eicosapentaenoic Acid
  • Nitric Oxide Synthase Type II
  • Heme Oxygenase-1
  • Ptgs2 protein, mouse
  • Cyclooxygenase 2