Multiple sclerosis is a chronic autoimmune disease of the central nervous system for which a number of disease-modifying therapies are available, including interferon beta (Avonex®, Rebif®, and Betaseron/Betaferon®), glatiramer acetate (Copaxone®), and an anti-VLA4 monoclonal antibody (Tysabri®). Despite the availability and efficacy of these protein and peptide drugs, there remains a significant number of patients who are untreated, including those with relatively mild disease who choose not to initiate therapy, those wary of injections or potential adverse events associated with therapy, and those who have stopped therapy due to perceived lack of efficacy. Since these drugs have side effects that may affect a patient's decision to initiate and to remain on treatment, there is a need to provide a therapy that is safe and efficacious but that requires a reduced dosing frequency and hence a concomitant reduction in the frequency of side effects. Here we describe the development of a PEGylated form of interferon beta-1a that is currently being tested in a multicenter, randomized, double-blind, parallel-group, placebo-controlled study in relapsing multiple sclerosis patients, with the aim of determining the safety and efficacy of 125 microg administered via the subcutaneous route every 2 or 4 weeks.