Regional aerobic glycolysis in the human brain

Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17757-62. doi: 10.1073/pnas.1010459107. Epub 2010 Sep 13.

Abstract

Aerobic glycolysis is defined as glucose utilization in excess of that used for oxidative phosphorylation despite sufficient oxygen to completely metabolize glucose to carbon dioxide and water. Aerobic glycolysis is present in the normal human brain at rest and increases locally during increased neuronal activity; yet its many biological functions have received scant attention because of a prevailing energy-centric focus on the role of glucose as substrate for oxidative phosphorylation. As an initial step in redressing this neglect, we measured the regional distribution of aerobic glycolysis with positron emission tomography in 33 neurologically normal young adults at rest. We show that the distribution of aerobic glycolysis in the brain is differentially present in previously well-described functional areas. In particular, aerobic glycolysis is significantly elevated in medial and lateral parietal and prefrontal cortices. In contrast, the cerebellum and medial temporal lobes have levels of aerobic glycolysis significantly below the brain mean. The levels of aerobic glycolysis are not strictly related to the levels of brain energy metabolism. For example, sensory cortices exhibit high metabolic rates for glucose and oxygen consumption but low rates of aerobic glycolysis. These striking regional variations in aerobic glycolysis in the normal human brain provide an opportunity to explore how brain systems differentially use the diverse cell biology of glucose in support of their functional specializations in health and disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / blood supply
  • Brain / metabolism*
  • Female
  • Glucose / metabolism*
  • Glycolysis
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Oxygen / metabolism*
  • Positron-Emission Tomography

Substances

  • Glucose
  • Oxygen