The topics of verification and validation have increasingly been discussed in the field of computational biomechanics, and many recent articles have applied these concepts in an attempt to build credibility for models of complex biological systems. Verification and validation are evolving techniques that, if used improperly, can lead to false conclusions about a system under study. In basic science, these erroneous conclusions may lead to failure of a subsequent hypothesis, but they can have more profound effects if the model is designed to predict patient outcomes. While several authors have reviewed verification and validation as they pertain to traditional solid and fluid mechanics, it is the intent of this paper to present them in the context of computational biomechanics. Specifically, the task of model validation will be discussed, with a focus on current techniques. It is hoped that this review will encourage investigators to engage and adopt the verification and validation process in an effort to increase peer acceptance of computational biomechanics models.