Solvent tunable optical properties of a polymerized vinyl- and thienyl-substituted ionic liquid

J Phys Chem B. 2010 Nov 18;114(45):14703-11. doi: 10.1021/jp102904e. Epub 2010 Sep 16.

Abstract

Thermal free radical polymerization of a self-assembled, bifunctional imidazolium-based ionic liquid (IL) monomer bearing both vinyl and thienyl groups is reported. FT-IR spectroscopy proves that the polymerization occurs through both the vinyl and thienyl groups. The polymer is resistant to swelling in water and common organic solvents. The as-synthesized polymer can be readily chemically doped and de-doped. Small-angle X-ray scattering studies indicate that the dried polymer adopts a weakly ordered lamellar structure. The p-doped, ethanol-solvated polymer undergoes a structural conversion to a nonlamellar phase. The absorption and photoluminescence spectra can be modulated in both the neutral (thiophene) and p-doped states depending on whether the polymer is dry or ethanol-solvated. The results demonstrate the possibility of incorporating solvent responsive optical characteristics in a π-conjugated polymer.