NDVI indicated characteristics of vegetation cover change in China's metropolises over the last three decades

Environ Monit Assess. 2011 Aug;179(1-4):1-14. doi: 10.1007/s10661-010-1715-x. Epub 2010 Sep 21.

Abstract

How urban vegetation was influenced by three decades of intensive urbanization in China is of great interest but rarely studied. In this paper, we used satellite derived Normalized Difference Vegetation Index (NDVI) and socioeconomic data to evaluate effects of urbanization on vegetation cover in China's 117 metropolises over the last three decades. Our results suggest that current urbanization has caused deterioration of urban vegetation across most cities in China, particularly in East China. At the national scale, average urban area NDVI (NDVI(u)) significantly decreased during the last three decades (P < 0.01), and two distinct periods with different trends can be identified, 1982-1990 and 1990-2006. NDVI(u) did not show statistically significant trend before 1990 but decrease remarkably after 1990 (P < 0.01). Different regions also showed difference in the timing of NDVI(u) turning point. The year when NDVI(u) started to decline significantly for Central China and East China was 1987 and 1990, respectively, while NDVI(u) in West China remained relatively constant until 1998. NDVI(u) changes in the Yangtze River Delta and the Pearl River Delta, two regions which has been undergoing the most rapid urbanization in China, also show different characteristics. The Pearl River Delta experienced a rapid decline in NDVI(u) from the early 1980s to the mid-1990s; while in the Yangtze River Delta, NDVI(u) did not decline significantly until the early 1990s. Such different patterns of NDVI(u) changes are closely linked with policy-oriented difference in urbanization dynamics of these regions, which highlights the importance of implementing a sustainable urban development policy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Cities / statistics & numerical data*
  • Environmental Monitoring
  • Plant Development*
  • Population Growth
  • Remote Sensing Technology
  • Spacecraft
  • Urbanization / trends