Study design: Keeping physically active is important for people who mobilize using a wheelchair. However, current tools to measure physical activity in the wheelchair are either not validated or limited in their application. The purpose of this study was to develop and validate a monitoring system to measure wheelchair movement.
Methods: The system developed consisted of a tri-axial accelerometer placed on the wheel of a wheelchair and an analysis algorithm to interpret the acceleration signals. The two accelerometer outputs in the plane of the wheel were used to calculate the angle of the wheel. From this, outcome measures of wheel revolutions, absolute angle and duration of movement were derived and the direction of movement (forwards or backwards) could be distinguished. Concurrent validity was assessed in comparison with video analysis in 14 people with spinal cord injury using their wheelchair on an indoor track and outdoor wheelchair skills course. Validity was assessed using intraclass correlation coefficients (ICC(2,1)) and Bland-Altman plots.
Results: The monitoring system demonstrated excellent validity for wheel revolutions, absolute angle and duration of movement (ICC(2,1)>0.999, 0.999, 0.981, respectively) in both manual and powered wheelchairs, when the wheelchair was propelled forwards and backwards, and for movements of various durations.
Conclusion: This study has found this monitoring system to be an accurate and objective tool for measuring detailed information on wheelchair movement and maneuvering regardless of the propulsion technique, direction and speed.