Saddle-node bifurcation to jammed state for quasi-one-dimensional counter-chemotactic flow

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 2):015102. doi: 10.1103/PhysRevE.82.015102. Epub 2010 Jul 21.

Abstract

The transition of a counter-chemotactic particle flow from a free-flow state to a jammed state in a quasi-one-dimensional path is investigated. One of the characteristic features of such a flow is that the constituent particles spontaneously form a cluster that blocks the path, called a path-blocking cluster (PBC), and causes a jammed state when the particle density is greater than a threshold value. Near the threshold value, the PBC occasionally collapses on itself to recover the free flow. In other words, the time evolution of the size of the PBC governs the flux of a counter-chemotactic flow. In this Rapid Communication, on the basis of numerical results of a stochastic cellular automata (SCA) model, we introduce a Langevin equation model for the size evolution of the PBC that reproduces the qualitative characteristics of the SCA model. The results suggest that the emergence of the jammed state in a quasi-one-dimensional counterflow is caused by a saddle-node bifurcation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ants
  • Chemotaxis*
  • Kinetics
  • Models, Biological*
  • Movement
  • Pheromones / chemistry
  • Pheromones / metabolism
  • Volatilization

Substances

  • Pheromones