Background: Although deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective therapeutic intervention in severe Parkinson's disease, its mechanism of action remains unclear. One possibility is that DBS suppresses local pathologically synchronised oscillatory activity.
Methods: To explore this, the authors recorded from DBS electrodes implanted in the STN of 16 patients with Parkinson's disease during simultaneous stimulation (pulse width 60 μs; frequency 130 Hz) of the same target using a specially designed amplifier. The authors analysed data from 25 sides.
Results: The authors found that DBS progressively suppressed peaks in local field potential activity at frequencies between 11 and 30 Hz as voltage was increased beyond a stimulation threshold of 1.5 V. Median peak power had fallen to 54% of baseline values by a stimulation intensity of 3.0 V.
Conclusion: The findings suggest that DBS can suppress pathological 11-30 Hz activity in the vicinity of stimulation in patients with Parkinson's disease. This suppression occurs at stimulation voltages that are clinically effective.