Background: The esophageal cancer related gene 4 (ECRG4) was initially identified and cloned in our laboratory from human normal esophageal epithelium (GenBank accession no.AF325503). ECRG4 was a new tumor suppressor gene in esophageal squamous cell carcinoma (ESCC) associated with prognosis. In this study, we investigated the novel tumor-suppressing function of ECRG4 in cancer cell migration, invasion, adhesion and cell cycle regulation in ESCC.
Methods: Transwell and Boyden chamber experiments were utilized to examined the effects of ECRG4 expression on ESCC cells migration, invasion and adhesion. And flow cytometric analysis was used to observe the impact of ECRG4 expression on cell cycle regulation. Finally, the expression levels of cell cycle regulating proteins p53 and p21 in human ESCC cells transfected with ECRG4 gene were evaluated by Western blotting.
Results: The restoration of ECRG4 expression in ESCC cells inhibited cancer cells migration and invasion (P < 0.05), which did not affect cell adhesion capacity (P > 0.05). Furthermore, ECRG4 could cause cell cycle G1 phase arrest in ESCC (P < 0.05), through inducing the increased expression of p53 and p21 proteins.
Conclusion: ECRG4 is a candidate tumor suppressor gene which suppressed tumor cells migration and invasion without affecting cell adhesion ability in ESCC. Furthermore, ECRG4 might cause cell cycle G1 phase block possibly through inducing the increased expression of p53 and p21 proteins in ESCC.