Small cell lung cancer (SCLC) is an aggressive malignancy with extremely high mortality due to the appearance of widespread metastases early in its clinical course and rapid acquisition of chemoresistance after initial therapy. A theory of cell adhesion-mediated drug resistance is thought to be a principal mechanism in which extracellular matrix proteins provide a survival advantage against cytotoxic drug-induced apoptosis. We found that the tetraspanin family member CD9 was expressed preferentially in SCLC tumors and metastases from three of seven relapsed patients, whereas chemonaïve primary tumors from 16 patients were CD9 negative with only one exception. Additionally, CD9 was highly expressed on SCLC cell lines rendered resistant to cisplatin or etoposide, and was upregulated in parental chemosensitive cells within 48 hours after exposure to either of these compounds. CD9-expressing chemoresistant SCLC cells adhered more tightly to fibronectin via β1 integrin, but they were less motile than the respective chemosensitive parental lines. Notably, treatment of the chemoresistant cells with chemokine CXCL12 downregulated CD9 and transiently restored motility. Moreover, selective targeting of CD9 by treatment with specific monoclonal antibody ALB6 or a small interfering RNA triggered apoptosis in the chemoresistant cells. Taken together, our findings implicate CD9 in the cell adhesion-mediated drug resistance mechanism, highlighting CD9 as an attractive therapeutic target to improve therapeutic outcomes in SCLC.