Human embryonic stem cell proliferation and differentiation as parameters to evaluate developmental toxicity

J Cell Physiol. 2011 Jun;226(6):1583-95. doi: 10.1002/jcp.22484.

Abstract

In vitro models based on embryonic stem cells (ESC) are highly promising for improvement of predictive toxicology screening in humans. After the successful validation of embryonic stem cell test (EST) in 2001; concerns have been raised on the usage of mouse ESC and also the morphological evaluation of beating cell clusters. This requires specialized skill-sets and is highly prone to misjudgement and false positive results. To overcome these limitations, we undertook the present study incorporating improvisations over the conventional EST. Here, we explored the potential of a human ESC (hESC)-based assay to evaluate the potential toxicity of penicillin-G, caffeine, and hydroxyurea. Drug treatment inhibited hESC adhesion and substantially altered the morphology and viability (∼ 50%) of embryoid bodies (EBs). Flow cytometry analysis not only showed a significant increase of apoptotic cells in the highest doses but also induced a diverse pattern in DNA content and cell cycle distribution relative to control. Both semi-quantitative and quantitative RT-PCR studies revealed a selective down regulation of markers associated with stemness (Nanog, Rex1, SOX-2, and hTERT); cardiac mesoderm (Cripto1, MEF-2C, and Brachyury); hepatic endoderm (AFP, HNF-3β, HNF-4α, GATA-4, and SOX-17); and neuroectoderm (Nestin, SOX-1, NURR1, NEFH, Synaptophysin, TH, and Olig2) in a drug as well as dose dependent manner indicating abnormal differentiation. Furthermore, a decrease in the expression of AFP and GFAP proteins followed by a dose-dependent reduction in the levels of hCG-β, progesterone-II, and estradiol hormones was demonstrated by immunocytochemistry and ECLIA, respectively. This new and unique approach comprising of DNA cell cycle analysis, germ layer-specific marker expression and hormone levels as endpoints might offer a clinically relevant and commercially viable alternative for predicting in vivo developmental toxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Caffeine
  • Cell Adhesion / drug effects
  • Cell Cycle / drug effects
  • Cell Death / drug effects
  • Cell Differentiation* / drug effects
  • Cell Differentiation* / genetics
  • Cell Line
  • Cell Lineage / drug effects
  • Cell Lineage / genetics
  • Cell Proliferation / drug effects
  • Cell Shape / drug effects
  • Down-Regulation / drug effects
  • Down-Regulation / genetics
  • Embryoid Bodies / cytology
  • Embryoid Bodies / drug effects
  • Embryoid Bodies / metabolism
  • Embryonic Stem Cells / cytology*
  • Embryonic Stem Cells / drug effects
  • Embryonic Stem Cells / metabolism
  • Hormones / metabolism
  • Humans
  • Hydroxyurea / toxicity
  • Mice
  • Neurons / cytology
  • Neurons / drug effects
  • Organ Specificity / drug effects
  • Organ Specificity / genetics
  • Penicillin G / toxicity
  • Pluripotent Stem Cells / cytology
  • Pluripotent Stem Cells / drug effects
  • Pluripotent Stem Cells / metabolism
  • Quality Control
  • Toxicity Tests*

Substances

  • Biomarkers
  • Hormones
  • Caffeine
  • Penicillin G
  • Hydroxyurea