1-Methyl-4-phenylpyridinium ion (MPP(+)), a neurotoxin selective to dopaminergic neurons and an inhibitor of mitochondrial complex I, has been widely used as an etiologic model of Parkinson's disease. In this study, we investigated the protective effects of a novel synthetic compound, 8-Phenyl-6a,7,8,9,9a,10-hexahydro-6H-isoindolo[5,6-g]quinoxaline-7,9-dione (PHID), on MPP(+)-induced cytotoxicity in SH-SY5Y cells. MPP(+) induced apoptosis characterized by generation of reactive oxygen species, caspase-3 activation, poly ADP ribose polymerase proteolysis and increase in Bax/Bcl-2 ratio were blocked by PHID in a dose-dependent fashion. Furthermore, MPP(+)-mediated activation of stress-activated protein kinase/c-Jun N-terminal kinase (JNK) was also inhibited by PHID in a dose-dependent manner. The results indicate that PHID protects against MPP(+)-induced apoptosis by blocking reactive oxygen species stimulation and JNK signaling pathways in SH-SY5Y cells, implicating the novel compound in the prevention of progressive neurodegenerative diseases such as Parkinson's disease.
Copyright © 2010 Elsevier B.V. All rights reserved.