The experience of environmental stress during development can substantially affect an organism's life history. These effects are often mainly negative, but a growing number of studies suggest that under certain environmental conditions early experience of such stress may yield individuals that are less sensitive to environmental stress later on in life. We used the butterfly Bicyclus anynana to study the effects of limited larval and adult food and forced flight on individual performance measured as reproduction and adult life span. Larvae exposed to food stress showed longer development and produced smaller adults. Thus, they were not able to fully compensate for the food deprivation during development. Females that experienced food stress during development did not increase tolerance for adult food limitation. However, females exposed to food stress during development coped better with forced flight compared with the control group. The apparent absence of costs of flight in poor-quality females may be a by-product of an altered body allocation, as females experiencing both food stress treatments had increased thorax ratios, compared with controls, and increased flight performances. The results reveal an important plasticity component to variation in flight performance and suggest that the cost of flight depends on an individual's internal condition.