MicroRNAs are gene regulators that work through a posttranscriptional repression mechanism. Dysregulation of microRNA expression could lead to a variety of disorders, in particular, human cancer, and has also been implicated in antihormone therapy resistance. However, little is known whether microRNAs have a role in estrogen-independent growth, leading to tamoxifen resistance in estrogen receptor (ER)-positive tumors. In this study, we use an in vivo selection system against a microRNA library using the MCF-7 model and demonstrate that miR-101 promotes estrogen-independent growth and causes the upregulation of phosphorylated Akt (pAkt) without impacting the ER level or activity. Importantly, although miR-101 suppresses cell growth in normal estradiol (E2)-containing medium, it promotes cell growth in E2-free medium. Moreover, estrogen deprivation greatly enhances miR-101-mediated Akt activation. Finally, we show that MAGI-2 (membrane-associated guanylate kinase), a scaffold protein required for PTEN (phosphatase and tensin homolog) activity, is a direct target for miR-101; suppression of MAGI-2 by miR-101 reduces PTEN activity, leading to Akt activation. Taken together, these results not only establish a role for miR-101 in estrogen-independent signaling but also provide a mechanistic link between miR-101 and Akt activation.