Heparan sulfate regulates VEGF165- and VEGF121-mediated vascular hyperpermeability

J Biol Chem. 2011 Jan 7;286(1):737-45. doi: 10.1074/jbc.M110.177006. Epub 2010 Oct 25.

Abstract

VEGF was first described as vascular permeability factor, a potent inducer of vascular leakage. Genetic evidence indicates that VEGF-stimulated endothelial proliferation in vitro and angiogenesis in vivo depend on heparan sulfate, but a requirement for heparan sulfate in vascular hyperpermeability has not been explored. Here we show that altering endothelial cell heparan sulfate biosynthesis in vivo decreases hyperpermeability induced by both VEGF(165) and VEGF(121). Because VEGF(121) does not bind heparan sulfate, the requirement for heparan sulfate suggested that it interacted with VEGF receptors rather than the ligand. By applying proximity ligation assays to primary brain endothelial cells, we show a direct interaction in situ between heparan sulfate and the VEGF receptor, VEGFR2. Furthermore, the number of heparan sulfate-VEGFR2 complexes increased in response to both VEGF(165) and VEGF(121). Genetic or heparin lyase-mediated alteration of endothelial heparan sulfate attenuated phosphorylation of VEGFR2 in response to VEGF(165) and VEGF(121), suggesting that the functional VEGF receptor complex contains heparan sulfate. Pharmacological blockade of heparan sulfate-protein interactions inhibited hyperpermeability in vivo, suggesting heparan sulfate as a potential target for treating hyperpermeability associated with ischemic disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blood Vessels / drug effects
  • Blood Vessels / metabolism*
  • Endothelial Cells / drug effects
  • Endothelial Cells / metabolism
  • Heparitin Sulfate / antagonists & inhibitors
  • Heparitin Sulfate / biosynthesis
  • Heparitin Sulfate / metabolism*
  • Humans
  • Mice
  • Neoplasms / blood supply
  • Neoplasms / metabolism
  • Permeability / drug effects
  • Phosphorylation / drug effects
  • Skin / blood supply
  • Skin / drug effects
  • Skin / metabolism
  • Sulfotransferases / deficiency
  • Urea / analogs & derivatives
  • Urea / pharmacology
  • Vascular Endothelial Growth Factor A / metabolism*
  • Vascular Endothelial Growth Factor Receptor-2 / metabolism

Substances

  • VEGFA protein, human
  • Vascular Endothelial Growth Factor A
  • aminoquinuride
  • Urea
  • Heparitin Sulfate
  • Vascular Endothelial Growth Factor Receptor-2
  • Sulfotransferases
  • heparitin sulfotransferase