Determining both cation and oxygen sublattices of grain boundaries is essential to understand the properties of oxides. Here, with scanning transmission electron microscopy, electron energy-loss spectroscopy, and first-principles calculations, both the Ce and oxygen sublattices of a (210)Σ5 CeO(2) grain boundary were determined. Oxygen vacancies are shown to play a crucial role in the stable grain boundary structure. This finding paves the way for a comprehensive understanding of grain boundaries through the atomic scale determination of atom and defect locations.