Far3p (factor arrest), a protein that interacts with Far7-11p, is required for the pheromone-mediated cell cycle arrest in G1 phase. We used a combination of computational and experimental strategies to identify the Far3p self-association, to map the Far3p domains that interact with Far3p itself and with other Far proteins, and to reveal the importance of the two coiled-coil motifs of Far3p in the integrity and function of the Far complex. We show that Far3p self-associates through its central region and its C-terminal coiled-coil domain, that the amino acid 61-100 region of Far3p interacts with Far7p, and that the Far3p N-terminal coiled-coil domain interacts with Far9p and Far10p. Mutation of the N-terminal coiled coil disrupts the interactions of Far3p with Far9p and Far10p, and mutation of the C-terminal domain weakens the Far3p self-interaction. Although the N- and C-terminal coiled-coil mutants reserve some of the interactions with itself and some other Far proteins, both mutants are defective in the pheromone-mediated G1 arrest, indicating that both coiled-coil motifs of Far3p are essential for the integrity and the function of the Far complex.
© 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.