It is well known that antioxidants have protective effects against oxidative stress. Unfortunately, in the presence of transition metals, antioxidants, including polyphenols with potent antioxidant activities, may also exhibit pro-oxidant effects, which may irreversibly damage DNA. Therefore, antioxidants with strong free radical-scavenging abilities and devoid of pro-oxidant effects would be of immense biological importance. We report two antioxidant dendrimers with a surface rich in multiple phenolic hydroxyl groups, benzylic hydrogens, and electron-donating ring substituents that contribute to their potent free radical-quenching properties. To minimize their pro-oxidant effects, the dendrimers were designed with a metal-chelating tris(2-aminoethyl)amine (TREN) core. The dendritic antioxidants were prepared by attachment of six syringaldehyde or vanillin molecules to TREN by reductive amination. They exhibited potent radical-scavenging properties: 5 times stronger than quercetin and 15 times more potent than Trolox according to the 1,1-diphenyl-2-picrylhydrazyl assay. The antioxidant dendrimers also protected low-density lipoprotein, lysozyme, and DNA against 2,2'-azobis(2-amidinopropane) dihydrochloride-induced free radical damage. More importantly, unlike quercetin and Trolox, the two TREN antioxidant dendrimers did not damage DNA via their pro-oxidant effects when incubated with physiological amounts of copper ions. The dendrimers also showed no cytotoxicity toward Chinese hamster ovary cells.
Copyright © 2010 Elsevier Inc. All rights reserved.