The protective effect of c9,t11-conjugated linoleic acid (CLA) on the inhibition of gap junctional intercellular communication (GJIC) was examined in a human mammary epithelial cell line (MCF-10A) treated with 12-O-tetradecanoylphorbol-13-acetate (TPA), relative to t10,c12-CLA isomer. TPA inhibited GJIC in a dose-dependent and reversible manner and was associated with connexin 43 phosphorylation. Pretreatment of 20 μM c9,t11-CLA for 24 h prior to 60 nM TPA for 1 h prevented the inhibition of GJIC by reducing the phosphorylation of connexin 43 via suppressing extracellular signal-regulated kinases (ERK1/2) activation. Reactive oxygen species (ROS) accumulation by TPA was attenuated by c9,t11-CLA. The efficacy of c9,t11-CLA in protecting inhibition of GJIC, connexin 43 phosphorylation, and ROS production was superior to that of t10,c12-CLA. These results suggest that c9,t11-CLA, including t10,c12-CLA, prevents the carcinogenesis of MCF-10A cells by protecting down-regulation of GJIC during the cancer promotion stage, and lack of their toxicities could be an excellent indicator for the chemoprevention of breast cancer.