Rotaxanes capable of recognising chloride in aqueous media

Chemistry. 2010 Nov 22;16(44):13082-94. doi: 10.1002/chem.201002076.

Abstract

A new, versatile chloride-anion-templating synthetic pathway is exploited for the preparation of a series of eight new [2]rotaxane host molecules, including the first sulfonamide interlocked system. (1)H NMR spectroscopic titration investigations demonstrate the rotaxanes' capability to selectively recognise the chloride anion in competitive aqueous solvent media. The interlocked host's halide binding affinity can be further enhanced and tuned through the attachment of electron-withdrawing substituents and by increasing its positive charge. A dicationic rotaxane selectively binds chloride in 35% water, wherein no evidence of oxoanion binding is observed. NMR spectroscopy, X-ray structural analysis and computational molecular dynamics simulations are used to account for rotaxane formation yields, anion binding strengths and selectivity trends.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anions / chemistry
  • Binding Sites
  • Chlorides / chemistry*
  • Crystallography, X-Ray
  • Magnetic Resonance Spectroscopy
  • Models, Molecular
  • Molecular Conformation
  • Molecular Structure
  • Rotaxanes / chemical synthesis*
  • Rotaxanes / chemistry
  • Sulfonamides / chemistry
  • Water / chemistry

Substances

  • Anions
  • Chlorides
  • Rotaxanes
  • Sulfonamides
  • Water