The distribution of insertion sequence (IS) 629 among strains of enterohemorrhagic Escherichia coli serovar O157 (O157) was investigated and compared with the strain lineages defined by lineage specific polymorphism assay-6 (LSPA-6) to demonstrate the effectiveness of IS629 analysis for population genetics analysis. Using pulsed-field gel electrophoresis and variable-number tandem repeat typing, 140 strains producing both VT1 and VT2 and 98 strains producing only VT2 were selected from a total of 592 strains isolated from patients and asymptomatic carriers in Chiba Prefecture, Japan, during 2003-2008. By LSPA-6 analysis, six strains had atypical amplicon sizes in their Z5935 loci and five strains had atypical amplicon sizes in their arp-iclR intergenic regions. Sequence analyses of PCR amplified DNAs showed that five of the six loci used for LSPA-6 analysis had tandem repeats and the allele changes were due to changes in the number of tandem repeats. Subculturing and long-term incubation was found to have no detectable effect on the lineages defined by LSPA-6 analysis, demonstrating the robustness of LSPA-6 analysis. Minimum spanning tree analysis reconstruction revealed that strains in lineage I, I/II, and II clustered on separate branches, indicating that the distribution of IS629 was biased among O157 strains in different lineages. Strains with LSPA-6 codes 231111, 211113, and 211114 had atypical amplicon sizes and were clustered in lineage I/II branch, and strains with LSPA-6 codes 212114, 221123, 221223, 222123, 222224, 242123, 252123, and 242222 had atypical amplicon sizes and clustered in lineage II branches. Linkage disequilibrium was observed in strains in every lineage when the standardized index of association was calculated using IS629 distribution data. Therefore, the distribution analysis of IS629 may be effective for population genetics analysis of O157 due to the biased IS629 distribution among strains in the three O157 lineages.
Copyright © 2010 Elsevier B.V. All rights reserved.