Molecular architecture of the vesicular stomatitis virus RNA polymerase

Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20075-80. doi: 10.1073/pnas.1013559107. Epub 2010 Nov 1.

Abstract

Nonsegmented negative-strand (NNS) RNA viruses initiate infection by delivering into the host cell a highly specialized RNA synthesis machine comprising the genomic RNA completely encapsidated by the viral nucleocapsid protein and associated with the viral polymerase. The catalytic core of this protein-RNA complex is a 250-kDa multifunctional large (L) polymerase protein that contains enzymatic activities for nucleotide polymerization as well as for each step of mRNA cap formation. Working with vesicular stomatitis virus (VSV), a prototype of NNS RNA viruses, we used negative stain electron microscopy (EM) to obtain a molecular view of L, alone and in complex with the viral phosphoprotein (P) cofactor. EM analysis, combined with proteolytic digestion and deletion mapping, revealed the organization of L into a ring domain containing the RNA polymerase and an appendage of three globular domains containing the cap-forming activities. The capping enzyme maps to a globular domain, which is juxtaposed to the ring, and the cap methyltransferase maps to a more distal and flexibly connected globule. Upon P binding, L undergoes a significant rearrangement that may reflect an optimal positioning of its functional domains for transcription. The structural map of L provides new insights into the interrelationship of its various domains, and their rearrangement on P binding that is likely important for RNA synthesis. Because the arrangement of conserved regions involved in catalysis is homologous, the structural insights obtained for VSV L likely extend to all NNS RNA viruses.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA-Directed RNA Polymerases / chemistry*
  • DNA-Directed RNA Polymerases / metabolism
  • DNA-Directed RNA Polymerases / ultrastructure
  • Models, Molecular
  • Phosphoproteins / chemistry
  • Phosphoproteins / metabolism
  • Phosphoproteins / ultrastructure
  • Protein Binding
  • Protein Structure, Tertiary
  • Vesiculovirus / enzymology*
  • Viral Proteins / chemistry
  • Viral Proteins / ultrastructure

Substances

  • Phosphoproteins
  • Viral Proteins
  • DNA-Directed RNA Polymerases