Sexually dimorphic nociception and opioid antinociception is very pervasive but poorly understood. We had demonstrated that spinal morphine antinociception in females, but not males, requires the concomitant activation of spinal μ- and κ-opioid receptors (MOR and KOR, respectively). This finding suggests an interrelationship between MOR and KOR in females that is not manifest in males. Here, we show that expression of a MOR/KOR heterodimer is vastly more prevalent in the spinal cord of proestrous vs. diestrous females and vs. males. Cross-linking experiments in combination with in vivo pharmacological analyses indicate that heterodimeric MOR/KOR utilizes spinal dynorphin 1-17 as a substrate and is likely to be the molecular transducer for the female-specific KOR component of spinal morphine antinociception. The activation of KOR within the heterodimeric MOR/KOR provides a mechanism for recruiting spinal KOR-mediated antinociception without activating the concomitant pronociceptive functions that monomeric KOR also subserves. Spinal cord MOR/KOR heterodimers represent a unique pharmacological target for female-specific pain control.