An integrated microfluidic cell array for apoptosis and proliferation analysis induction of breast cancer cells

Biomicrofluidics. 2010 Oct 8;4(4):44104. doi: 10.1063/1.3497376.

Abstract

In vitro sensitivity testing of tumor cells could rationalize and improve the choice of chemotherapy and hormone therapy. In this report, a microfluidic device made from poly(dimethylsiloxane) and glass was developed for an assay of drug induced cytotoxicity. We evaluated the apoptotic and proliferation-inhibitory effects of anticancer drugs mitomycin C (MMC) and tamoxifen (TAM) using MCF-7 breast cancer cells. MMC and TAM both induced apoptosis and inhibited proliferation of MCF-7 cells in a concentration-dependent manner. MMC caused the expression of antiapoptotic protein Bcl-2 a dose-dependent reduction in MCF-7 cells. The expression of Bcl-2 did not change significantly in MCF-7 cells treated by TAM. The results in the microfluidic device were correlated well with the data obtained from the parallel experiments carried out in the conventional culture plates. The developed microfluidic device could be a potential useful tool for high content screening and high throughput screening research.