Various technologies including nucleic acid, protein, and metabolic array analyses of blood, liver tissue, and bile are emerging as powerful tools in the study of hepatic pathophysiology. The entire lexicon of liver disease, however, has been written using classical hematoxylin-eosin staining and light microscopic examination. The authors' goal is to develop new tools to enhance histopathologic examination of liver tissue that would enrich the information gained from liver biopsy analysis, enable quantitative analysis, and bridge the gap between various "-omics" tools and interpretation of routine liver biopsy results. This article describes the progress achieved during the past 2 years in developing multiplex quantum dot (nanoparticle) staining and combining it with high-resolution whole-slide imaging using a slide scanner equipped with filters to capture 9 distinct fluorescent signals for multiple antigens. The authors first focused on precise characterization of leukocyte subsets, but soon realized that the data generated were beyond the practical limits that could be properly evaluated, analyzed, and interpreted visually by a pathologist. Therefore, the authors collaborated with the open source FARSIGHT image analysis project (http://www.farsight-toolkit.org). FARSIGHT's goal is to develop and disseminate the next-generation toolkit of automated image analysis methods to enable quantification of molecular biomarkers on a cell-by-cell basis from multiparameter images. The resulting data can be used for histocytometric studies of the complex and dynamic tissue microenvironments that are of biomedical interest. The authors envisage that these tools will eventually be incorporated into the routine practice of surgical pathology and precipitate a revolution in the specialty.
Copyright © 2010. Published by Elsevier Inc.