Oxidative stress plays a role in the regulation of cancer cell metastasis which involves cell invasion and adhesion that could be supported by ADAM proteins through the activities of their metalloprotease and disintegrin domains. We hypothesized that oxidative stress could act through the induction of ADAM9 protein in some cancer cells. Indeed, Western blot analysis for ADAM9 performed on A549 cells exposed to H(2) O(2) reveals a dose-dependent induction of two proteins (80 and 68 kDa) correlated with a sharp increase of the ADAM protease activity measured in supernatant while the activity measured on the cell layer was slightly affected. The 80kDa protein corresponds to the mature form of ADAM9. Immunoprecipitation analysis performed on concentrated supernatants revealed that the 68 kDa protein is a secreted form of ADAM9. When exposed to H(2) O(2) , A549 cells cocultured with confluent endothelial vascular cells resulted in a 5.5 fold (p < 0.001) increase in the number of adherent cells. Similarly, matrigel assay revealed a 3.25 fold (p < 0.01) increase in the number of invasive cells. The suppression of ADAM9 expression by specific small interfering RNA reduced oxidative stress-induced invasiveness and adhesiveness. These functions could be mediated by an interaction between ADAM9 and β1 integrin because each of them were inhibited when the experiment is performed in presence of mAbs targeting ADAM9 ectodomain or β1-integrin. These results emphasize the importance of oxidative stress in the regulation of cancer cell metastasis and suggest that ADAM9 and its secreted isoform can be important determinants in the ability of cancer cells to disseminate.
Copyright © 2010 UICC.