A transcriptional regulatory network represents a molecular framework in which developmental or environmental cues are transformed into differential expression of genes. Transcriptional regulation is mediated by the combinatorial interplay between cis-regulatory DNA elements and trans-acting transcription factors, and is perhaps the most important mechanism for controlling gene expression. Recent innovations, most notably the method for detecting protein-DNA interactions genome-wide, can help provide a comprehensive catalog of cis-regulatory elements and their interaction with given trans-acting factors in a given condition. A transcriptional regulatory network that integrates such information can lead to a systems-level understanding of regulatory mechanisms. In this review, we will highlight the key aspects of current knowledge on eukaryotic transcriptional regulation, especially on known transcription factors and their interacting regulatory elements. Then we will review some recent technical advances for genome-wide mapping of DNA-protein interactions based on high-throughput sequencing. Finally, we will discuss the types of biological insights that can be obtained from a network-level understanding of transcription regulation as well as future challenges in the field.