Determination of osteoporotic status is based primarily on areal bone mineral density (aBMD) obtained through dual X-ray absorptiometry (DXA). However, many fractures occur in patients with T-scores above the WHO threshold of osteoporosis, in part because DXA measures are insensitive to biomechanically important alterations in bone quality. The goal of this study was to determine--within groups of subjects with identical radius aBMD values--the extant variation in densitometric, geometric, microstructural, and biomechanical parameters. High resolution peripheral quantitative computed tomography (HR-pQCT) and DXA radius data from males and females spanning large ranges in age, osteoporotic status, and anthropometrics were compiled. 262 distal radius datasets were processed for this study. HR-pQCT scans were analyzed according to the manufacturer's standard clinical protocol to quantify densitometric, geometric, and microstructural indices. Micro-finite element analysis was performed to calculate biomechanical indices. Factor of risk of wrist fracture was calculated. Simulated aBMD calculated from HR-pQCT data was used to group scans for evaluation of variation in quantified indices. Indices reflecting the greatest variation within aBMD level were BMD in the central portion of the trabecular compartment (max CV 142), trabecular heterogeneity (max CV 90), and intra-cortical porosity (max CV 151). Of the biomechanical indices, cortical load fraction had the greatest variation (max CV 38). Substantial variations in indices reflecting density, structure, and biomechanical competence exist among subjects with identical aBMD levels. Overlap of these indices among osteoporotic status groups reflects the reported incidence of osteoporotic fracture in subjects classified as osteopenic or normal.
Copyright © 2010 Elsevier Ltd. All rights reserved.