To better describe the epidemiology of influenza at local level, the time course of pandemic influenza A (H1N1) 2009 in the city of Hong Kong was reconstructed from notification data after decomposition procedure and time series analysis. GIS (geographic information system) methodology was incorporated for assessing spatial variation. Between May and September 2009, a total of 24415 cases were successfully geocoded, out of 25473 (95.8%) reports in the original dataset. The reconstructed epidemic curve was characterized by a small initial peak, a nadir followed by rapid rise to the ultimate plateau. The full course of the epidemic had lasted for about 6 months. Despite the small geographic area of only 1000 Km2, distinctive spatial variation was observed in the configuration of the curves across 6 geographic regions. With the relatively uniform physical and climatic environment within Hong Kong, the temporo-spatial variability of influenza spread could only be explained by the heterogeneous population structure and mobility patterns. Our study illustrated how an epidemic curve could be reconstructed using regularly collected surveillance data, which would be useful in informing intervention at local levels.